Management of common neurological diseases in HIV/AIDS

Avindra Nath
Professor, Neurology and Neuroscience
Director, Division of Neuroimmunology and
Neurological Infections

Johns Hopkins University
Baltimore

HIV clades worldwide

Neurological Manifestations of HIV infection

Directly due to HIV

- Sensory neuropathy
- Vacuolar myelopathy
- Dementia

Unmask autoimmune diseases

polymyositis

myasthenia gravis

Acute inflammatory demyelinating neuropathy (GBS)

Multiple sclerosis

Opportunistic infections

Complications of ART

Immune reconstitution syndrome

35 yrs with weakness in limbs and memory dysfunction for 1-2 weeks

Focal/ lateralizing signs

Opportunistic infections

CNS lymphoma

35 yrs with weakness in limbs and memory dysfunction for 1-2 weeks

Non-focal signs:

Cognitive decline, retropulsion, limb rigidity and hyperreflexia

Meningitis or HIV dementia

Differentiation of encephalopathy in AIDS

	HIV Dementia	CMV encephalitis	PML
Clinical Features	Psycho-motor slowing	Delirium, seizures, brainstem signs	Focal signs
Course	months	Days-weeks	Weeks-months
CD4 count	<500 (d)	<100	<100
MRI	Diffuse atrophy/WM hyperintensities	periventriculitis	Subcortical WM lesions
CSF	Non-specific	PCR+90%	PCR+80%

Progression of HIV dementia: clinical features

- 6 months mean progression untreated
- severe apathy and psychomotor slowing
- memory loss, poor insight
- gait & motor impairments, tremor, hyper-reflexia, hypertonia
- associated syndromes:
 - myelopathy
 - sensory neuropathy

Neurological Signs useful in Diagnosis of HIV-dementia

Slow rapid eye movements,

Slow limb movements

Postural instability

Hyperreflexia

Hypertonia

Frontal release signs

Modified HIV dementia scale:

- robust screening tool, but not specific
- sensitivity = 70%
- specificity = 71%

CSF

Normal or slight increase in cells or protein

MRI scan (Age:15ys)

PET scan

HIV associated Neurocognitive Disorders (HAND)

Asymptomatic

Mild

Dementia

Course of HAND in the Era of HAART

Prevalence of HAND in aviremic patients (Simioni et al. 2009)

CSF viral load correlates with severity of Dementia (Pre-HAART era)

Cumulative Incidence of HIV-Dementia

N. J Neurovirol. 2002 Content of A 1994-7: CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of A 1997 - : CD4 < 200 George of

Risk Factors for HIV associated Neurocognitive Disorders (HAND)

Unsuppressed plasma or CSF HIV RNA

CD4 <200

Extremes of age

History of drug abuse

Anemia

Low body weight

Genetic factors

ApoE4 MCP-1, CCR-2 TNF receptor polymorphisms

Differential Diagnosis of HAND

Anxiety

Depression

Alcohol

Recreational drugs

Medication side effects

Metabolic encephalopathy

Hypothyroidism

Vitamin B₁₂ deficiency

Drug interactions with protease inhibitors

Pathology of HAND

Jones et al., 2000; Kruman et al., 1998

Dentate Gyrus

Jones, Bell and Nath (unpublished)

Principles of Therapy for HIV CNS infection

 Maximize antiretrovirals to suppress CSF HIV RNA

Preferably use CNS-"penetrant" agents

Construct simplified regime - BD or QD

Supervised therapy:

CSF penetrating ARTs

Definition: CSF level exceeds the level needed to inhibit replication of HIV

NRTI

stavudine (D4T)

zidovudine (ZDV)

abacavir (ABV)

NNRTI

efavirenz (EFV)

nevirapine (NVP)

Protease Inhibitors

indinavir (IDV)

Problems with current ART

Poor penetration across BBB

P-glycoprotein

organic transporters

Drug resistance

No effect post viral integration

viral reservoirs spared

early viral proteins still produced

Symptomatic Therapy

Neuroleptics: Atypical antipsychotics

Antidepressants: Low dose fluoxetine (Prozac)

Anticonvulsants: valproate, levitarecetam, gabapentin or topiramate.

Headaches: Triptans interact with Protease inhibitors

Parkinsonism: poor response to dopamine agonists

Sleep disturbance: Sleep apnea-protease inhibitors; Insomnia-efaverinz

Unusual Manifestations

HIV infection and Cerebellar degeneration

(Tagliati et al., Neurology 1998;50:244-51)

HIV+ Cocaine

(Meltzer et al., AJNR 1998;19:83-9)

8yr old with congenital HIV infection with microcephaly and developmental delay developed sudden onset of hemiparesis. CT

showed subarachanoid hemorrhage

56 yrs old woman started on ART 4 month ago

Generalized seizure 2 wks ago

Progressive decrease in consciousness x 2 days

CSF: 4 WBC; Protein 78;

HIV viral load 9,024

CD4 count 319;

Plasma viral load 3,782

methylprednisone 1g/day x 5 days

Dramatic improvement in mental status

<u>Discharged</u> on prednisone 60mg/day tenofovir, lopinavir/ritonavir, zidovudine

Immune Reconstitution Inflammatory Syndrome

"IRIS is a worsening of a patient's clinical condition that is paradoxically attributable to the recovery of the immune system after initiation of ART"

EPIDEIMIOLOGY of IRIS

Patients on HAART

Patients with OI on HAART

Shelburne et al., 2006

Time between of Initiation of HAART and IRIS

Treatment options for IRIS are not ideal

Steroids:

Risks from immune suppression

Interruption of HAART/immune restorative therapy:

Risk for resistance to therapy

Re-emegence of IRIS upon restarting HAART/ immune restorative therapy

Recommendation for use of steroids in IRIS

Catastrophic IRIS: high dose steroids taper with oral steroids x 1 month (with OI prophylaxis)

Symptomatic IRIS: high dose steroids taper with oral steroids (debatable)

Asymptomatic IRIS: wait and see (debatable)

HIV Myelopathy

Spasticity
Sensory ataxia
Urinary
symptoms

Peripheral Nervous System with HIV

- Radiculopathy
- GBS
- Mononeuritis multiplex
- Sensory motor neuropathy

CMV Polyradiculitis

- Occurs late in HIV infection; CD4 usually < 100; concurrent CMV infection in >60%
- Cauda equina syndrome: asymmetric motor, perineal sensory, back pain, sphincter
- CSF: poly pleocytosis, ↑ protein, ↓ glucose, + CMV PCR+ in 95%
- Rx: Induction: ganciclovir [+ foscarnet]
 - Maintenance: valganciclovir

CMV polyradiculitis

- enhancing nerve roots
- necrotic roots
- CMV inclusions
- spinal cord involvement

HIV-associated GBS

Demyelinated nerve segments

- Increased frequency of GBS relative to general population
- Similar presentation to HIV neg, except that CSF usually <u>cellular</u>
- Usually presents early in HIV infection
- Presumably an immunemediated phenomenon
- Dx: NCV's/nerve bx.
- Responds to plasmapheresis or IVIG

Nerve biopsy shows macrophage mediated demyelination in HIV-associated GBS

Mononeuritis multiplex in HIV infection

- abrupt onset
- severe pain
- Hepatitis B & C
- requires nerve Bx
- Rx: steroids

Vessel occlusion and inflammation in wall

Incidence of neuropathy

Lichenstein CID 2004

Clinical features of HIV sensory neuropathies

...."springtime in nerveland"....

Absent/reduced AJ's 96%

Distal weakness 33%

Atrophy or wasting 30%

Fasciculations

 Features of HIV distal sensory polyneuropathy and antiretroviral toxic neuropathy are identical. Neuropathic sx. are correlated with plasma HIV RNA

Confounding illnesses in the assessment of HIV sensory neuropathies

- Antiretroviral exposure: d4T 8fold, ddl 4-fold
- Diabetes in 11% of HAART recipients; IGT in ~ 20%
- Alcohol abuse; hepatitis C
- Entrapment neuropathies
- Vitamin deficiencies or overuse
- Morton's neuroma

Macrophage activation and neuronal reduction in DRG correlates with HIV-SN (Pardo C, 2003)

Skin biopsy technique

HIV sensory neuropathies Skin biopsy assesses unmyelinated nerve fibers

Thigh: normal density

Distal leg: reduced density and nerve fiber swellings

(unlicensed) treatments for HIV sensory neuropathies

Lamotrigine: Na channel

Glucuronidation, rash

Topiramate: Glutamate

Renal excretion, wt loss, kidney stones

Gabapentin/pregabalin: A2delta calcium

Renal excretion, edema, sedation

Duloxetine: serotonin/norepinephrine RRI

Nausea, hepatotoxicity

Combination therapies: eg NEJM study of gabapentin

+ morphine

Acknowledgements

Acknowledgements

